Water Levels of Lake Michigan

Mike Cellitti

Marine Program Leader at NWS Green Bay Green Bay Port Symposium April 17, 2024

winter at

Water Level Monitoring

Water Level Monitoring

- The 53 NOAA/NOS stations record a 3 minute average water level every 6 minutes
- Daily levels are from each lake's master gauge
- Monthly lake-wide average levels are determined from a pre-determined set of approved U.S. and Canadian gauges
- Data is available starting in 1918
- Many stations also record wind, relative humidity, air & water temperature, barometric pressure

NOAA/NOS/CO-OPS water level station at Mackinaw City, MI. Many stations are equipped with meteorological sensors similar to this one.

The Water Cycle

- Net basin supply is the primary driver of Great Lakes water levels
- Net basin supply = precipitation + runoff evaporation
- Precipitation and runoff (snow melt) peaks in spring and summer (rising water levels)
- Evaporation is highest in autumn and winter when cold air flows over the relatively warm waters of the Lakes (falling water levels)
- Ice cover reduces evaporation

The Water Cycle

ANNUAL WATER LEVELS AND THE HYDROLOGIC CYCLE

Long Term Precipitation Trends Great Lakes Basin

An increasing trend in precipitation is observed long-term

Annual Precipitation over Wisconsin Relatively dry conditions over last 3 years

Record Driest	Bottom ¹ /10	Bottom ⅓	Normal	Top ⅓	Top ¹ ⁄10	Record Wettest	
Period	Value	1901-2000 Mean	Anomaly	Rank (1895-2024)	Driest/Wette Since	st	Record
<u>Jan–Dec 2023</u> 12-Month	30.13"	31.29"	-1.16"	50th Driest	Driest since:	<u>2021</u>	<u>1910</u>
	(765.30mm)	(794.77mm)	(-29.46mm)	80th Wettest	Wettest since	: <u>2022</u>	<u>2019</u>
<u>Jan–Dec 2022</u> 12-Month	32.28"	31.29"	0.99"	67th Driest	Driest since:	<u>2021</u>	<u>1910</u>
	(819.91mm)	(794.77mm)	(25.15mm)	63rd Wettest	Wettest since:	<u>2020</u>	<u>2019</u>
<u>Jan–Dec 2021</u> 12-Month	29.90"	31.29"	-1.39"	45th Driest	Driest since:	<u>2012</u>	<u>1910</u>
	(759.46mm)	(794.77mm)	(-35.31mm)	85th Wettest	Wettest since	: <u>2020</u>	<u>2019</u>
	Ties: <u>1918</u> , <u>1943</u>						
<u>Jan–Dec 2020</u> 12-Month	34.19"	31.29"	2.90"	93rd Driest	Driest since:	<u>2012</u>	<u>1910</u>
	(868.43mm)	(794.77mm)	(73.66mm)	37th Wettest	Wettest since: 20		<u>2019</u>
	Ties: 2000						
<u>Jan–Dec 2019</u> 12-Month	44.55"	31.29"	13.26"	129th Driest	Driest since	e: <u>2018</u>	<u>1910</u>
	(1,131.57mm)	(794.77mm)	(336.80mm)	1st Wettest Wettest to Date		Date	2019

Annual Precipitation over Michigan Persistent wet conditions over last 5 years

Record Driest	Bottom ¹ /10	Bottom ⅓	Normal Top ⅓		Top ¼	Record	l Wettest
Period	Value	1901-2000 Mean	Anomaly	Rank (1895-2024)	Driest/Wettest Since		Record
<u>Jan-Dec 2023</u> 12-Month	33.41" (848.61mm)	31.13" (790.70mm)	2.28" (57.91mm)	97th Driest	Driest since:	<u>2022</u>	<u>1930</u>
				33rd Wettest	Wettest since:	<u>2020</u>	<u>2019</u>
<u>Jan-Dec 2022</u> 12-Month	32.62" 31.13" (828.55mm) (790.70mm)	1.49"	86th Driest	6th Driest Driest since:		<u>1930</u>	
		(790.70mm)	(37.85mm)	44th Wettest	Wettest since:	<u>2021</u>	<u>2019</u>
<u>Jan-Dec 2021</u> 12-Month	32.88" 31.13"	1.75"	92nd Driest	Driest since:	<u>2015</u>	<u>1930</u>	
	(835.15mm)	(790.70mm)	(44.45mm)	38th Wettest	Wettest since:	<u>2020</u>	<u>2019</u>
	Ties: <u>1911</u>						
<u>Jan-Dec 2020</u> 12-Month	35.31"	31.13" (790.70mm)	4.18" (106.17mm)	112th Driest	Driest since:	<u>2015</u>	<u>1930</u>
	(896.87mm)			18th Wettest	Wettest since	: <u>2019</u>	<u>2019</u>
<u>Jan-Dec 2019</u> 12-Month	41.83" 31.13"	10.70"	129th Driest	Driest since	e: <u>2018</u>	<u>1930</u>	
	(1,062.48mm)	(1,062.48mm) (790.70mm)	(271.78mm)) 1st Wettest	t Wettest to I	Date	2019

Drought Improving over Wisconsin Abnormally Dry (D0) to Moderate Drought (D1) remain over parts of the northern Lake Michigan basin

90

80

70

50

25

Percent of Normal Precipitation (%) 1/1/2024 - 4/3/2024

U.S. Drought Monitor Midwest Climate Region

April 2, 2024 (Released Thursday, Apr. 4, 2024) Valid 8 a.m. EDT

Drought Conditions (Percent Area)						
	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	37.95	62.05	27.97	7.12	1.30	0.00
Last Week 03-26-2024	34.90	65.10	26.56	7.29	1.36	0.00
3 Month s Ago 01-02-2024	22.92	77.08	50.25	20.76	4.20	0.00
Start of Calend ar Year 01-02-2024	22.92	77.08	50.25	20.76	4.20	0.00
Start of Water Year 09-26-2023	16.82	83.18	54.98	23.81	6.21	0.13
One Year Ago 04-04-2023	82.92	17.08	5.46	1.78	0. 17	0.06

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

Author: Brad Pugh CPC/NOAA

droughtmonitor.unl.edu

Lake Michigan Ice Coverage Winter 2023-2024

Lake Michigan Average Ice Cover

Lake Michigan-Huron Evaporation Last 5 Years

- Low ice cover supported potentially higher evaporation than normal this year
- However, the very warm temperatures led to well below normal evaporation in December. Thus, the impacts on evaporation from a lack of low ice cover was lessened.

Lake Michigan-Huron Water Levels Since January 2023

Great Lakes Water Levels Past 100 Years of Historical Record

 Year to year variability in water levels, but generally long periods of higher than normal water levels and lower than normal water levels exist.

NOAA ENSO Forecast Probabilities

 Strong El Nino is forecast to transition to a La Nina by next autumn

Lake Michigan-Huron Water Levels During Past El Nino to La Nina Episdoes

- Moderate signal for decreasing water levels over next year
- Average year over year change is about -0.33 ft (-0.38 ft in moderate to strong El Nino's only)
- Little to no signal 24 months into the future

Lake Michigan-Huron Water Levels 6 Month Forecast

- Official forecast calls for water levels to remain near to slightly above the long term average through the summer
- Past data suggests a moderate signal for falling water levels 1 year from now
- Antecedent conditions argue for falling water levels over next 12 months

Temperature / Precip Outlook April - June

Lake Michigan-Huron Water Level Forecast Summary

- El-Nino to La Nina global weather pattern expected to have some influence on Lake Michigan-Huron water levels over the next 12 months
- Historical data suggests there is precedent for water levels to remain near current levels or decrease over the next 12 months
- With a moderate drought and lack of runoff from spring snow melt, conditions are favorable for falling year-overyear water levels later this year